
RD-A154 823 INDEX FILTRATIONS AND THE HOMOLOGY INDEX BRAID FOR i/i
PARTIALLY ORDERED MORS..(U) WISCONSIN UNIV-MRDISON
MATHEMATICS RESEARCH CENTER R FRRNZOSA APR 85

UNCLASSIFIED MRC-TSR-28i8 DARG29-88-C-8841 F/G 7/2 NL

E/mll/h/I/Ill
IIIIIIIIIIIIIIl~lfllf
UIIIIIII



1.01

M E Am

F, "

31.6

A MICROCOPY RESOLUTION TESTCAT
NATIONAL. BUREAU OF' STANDARDS- 196HAR



CP
(~) NRC Technical Summary Rert #2810

N
~CO INDEX FILTRATIONS AND THE HOMOLOGY

INDEX BRAID FOR PARIALLY ORUNJED
MO0RSE DECOMPOSITION

Robert Franzoa

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705

April 1985

a-(Received March 25, 1985)

-AJ

Approved far public release
DlstribuUon unlimited D

ELECTE
4 Sponhored by JUN1 I 8 I I

U. B. Army Research Office
P. 0. Box 12211 l
Research Triangle Park-
North Carolina 27709

85 06 1016
**~~~~~~~~* Z.~. ,.%%*~..%



IRTIS ORA"I
DTIC TAOCP
Unanmounoeunc 0ed UNIVERSITY OF WISCONSIN-MADISON
JustifiOat 0 -MATHEMATICS RESEARCH CENTER

l INDEX FILTRATIONS AND THE HOMOLOGY INDEX BRAID FOR

Distribution/ PARTIALLY ORDERED MORSE DECOMPOSITIONS

Availability Codes Robert Fransosa
AvaI and/or

Dist Special MRC Technical Summary Report #2810
April 1985

ABSTRACT

On a Morse decomposition of an invariant set in a flow there are partial

orderings defined by the flow. These are called admissible orderings of the

Morse decomposition. The index filtrations for a total ordering of a Morse

decomposition are generalized in this paper with the definition and proof of

existence of index filtrations for admissible partial orderings of a Morse

decomposition.

It is shown that associated to an index filtration there is a collection

of chain complexes and chain maps called the chain complex braid of the index

filtration. The homology index braid of the corresponding admissible ordering

of the Morse decomposition is obtained by passing to homology in the chain

complex braid.
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INDEX FILTRATIONS AND THE HOMOLOGY INDEX BRAID FOR

PARTIALLY ORDERED MORSE DECOMPOSITIONS

Robert Franzosa

INTRODUCTION

In the classical Morse theory a gradient flow of a function

defined on a manifold is examined. The function is assumed to

have finitely many critical points. The statement of Morse theory

then relates the dimensions of the unstable invariant manifolds of

these critical points to algebraic invariants of the whole manifold.

In Conley 1] and Conley-Zehnder [ 2] these ideas are extended

to a setting where the manifold is replaced with a compact invariant

set S in a locally compact local flow in a Hausdorff space with a

flow. The critical points are replaced with a collection M of

mutually disjoint compact invariant subsets of S. The gradient

structure is replaced with a total order that is defined on M and

respected by the flow on the complement, in S, of the union of the

sets in M.

The collection M is called a Morse decomposition of S. The

total order on M is called an admissible (total) ordering of the *.

Morse decomposition. Associated to an admissible ordering of a

Morse decomposition there is a distinguished collection of compact

invariant subsets of S. This collection, which includes the Morse

decomposition, is called the collection of Morse sets of the admis-

sib~eordering. Using an index filtration for an admissible ordering

of a Morse decomposition Conley-Zehnder C 2] exhibit algebraic re-

lationships between the Conley indices of the associated Morse sets.

V...
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X. 2

In this paper we generalize these ideas by extending the defini-

tion of an admissible ordering of a Morse decomposition to include

partial orders. This extension is significant because for each Morse

decomposition there is an extremal partial (i.e., notnecessarily

total) order that serves as an admissible ordering. This admissible

ordering is called the flow-ordering of the Morse decomposition.

In our setting the above described algebraic relations associated

to an admissible ordering of a Morse decomposition take the form of a

collection containing the homology of the Conley index of each Morse

set, flow- defined maps between these homology complexes, and braid

diagrams depicting relationships between these maps. This collection.

is called the homology index braid of the admissible ordering. For

a given Morse decomposition the homology index braid of the flow-

ordering contains the homology index braid of each other admissible

ordering,and therefore yields the maximal amount of algebraic informa-

tion under consideration for the Morse decomposition. We refer to

the homology index braid of the flow-ordering as the homology index

braid of tbe Morse decomposition.

As in [2 ),the algebraic relations (i.e.,the elements of the

homology index braid) associated to an admissible ordering of a Morse

decomposition are defined via an index filtration for the admissible

ordering. The main focus of this paper is to generalize the index

filtrations for admissible total orderings (Conley-Zehnder [2 )) by

defining and proving the existence of index filtrations for admissible

orderings that are partial orders.
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We begin with a discussion of partial orders in section 1. In

section ? we study properties of Morse decompositions and admissible

orderings. In section 3 we define and prove the existence of index

filtrations for an admissible ordering of a Morse 4ecomposition. An

introduction to the algebraic relations associated to an admissible

ordering of a Morse decomposition is presented in section 4. A more

thorough treatment of this topic can be found in [.4 . In section

5 we present a simple example illustrating the theory discussed in

sections 2 through 4.

Besides Conley [1 J and Conley-Zehnder [ 2), the works of Kurland

[6 ] - [ 8 J are important references for the index theory presented

here. Recently, Salamon [9) has simplified the proofs of many of

the results contained in all of these references.

SECTION 1: Partial Orders

In this section we present the necessary background material

from partial orders. Most of the results described in this section

are given without proof since the proofs are all simple consequences

of the definitions.

DEFINITION 1.1:

A. A partial order on a set P is a relation < on P that satisfies:

1) the relation w < w never holds for r c P,

2) if v • w' and V' < ir", then i < n".

i'N

1;1ON il 1
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B. A total order on a set P is a partial order on P that also

satisfies:

3) for each w, w' e P, either i < wT or wl' < w.

C. An ordered set is a set P on which there is a partial order. A

totally ordered set is a set P on which there is a total order.

NOTE: What we call a partial order is sometimes referred to as a

strict partial order.

For the remainder of this section let P be an ordered set with

a partial order <. If Q is a subset of P, then < induces a partial

order on Q called the restriction of < to Q.

If i, wr e P, and neither w < wr nor T < i, then we say that

w and i' are noncomparable.

DEFINITION 1.2:

A. An interval in < is a subset I c P for which Vi, wi e I and

w < w" < i' together imply that w" e I. We denote the set of

intervals in < by I(<).

B. An attracting interval in < is a subset I c P for which w e I

and IT' < i together imply that r' c I. We denote the set of

attracting intervals in < by A(M).

The reason for the choice of the term "attracting" in definition

1.2.B becomes clear in the next section. For each w C P the set {70

is an interval; we denote this simply by ir.

'V,.
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PROPOSITION 1.3:

A. A(<) c I(M).

B. * and P are in I(<), and if 11, 12 e I(), then 11 n 12 C I().

C. * and P are in A(<), and if I1, 12 A(), then I, u 12 and

1 n 12 are in A(<).

In what follows we use < to denote both the partial order on P

and the usual order on the integers. There should be no confusion.

DEFINITION 1.4: An adjacent n-tuple of intervals in < is an ordered
collection (I1, I2 ... , In ) of mutually disjoint subsets of P

satisfying:

n
1) U Ii C I(),

i=l

2) 7r i IJ, ' , C I j < k imply iO f f.

We denote the collection of adjacent n-tuples of intervals in

< by I n (<). Note that I() = I(<). If (I,J) is an adjacent pair

(i.e. 2-tuple) of intervals, then we usually denote the interval

I U J by IJ. If (J,I) and (I,J) are both adjacent pairs of inter-

vals, then we say what I and J are noncomparable. If

n
( I) I (<) and u I. = I, then we call (Ii, ... , I ) a

decomposition of I.

Justification for the use of the term "intervals" in definition r -

1.4 is described in the following propositions

'. ,.
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PROPOSITION 1.5: If (Ii,...,I n ) n I (, and p, q e {1,...,n) with

q
p < q, then u I. e I(<). In particular, for each p e (1,...,n}

Ip C IM.

q n
PROOF: Suppose w, r' e u I. and w < w" < 7'. Since u I. is an

1 i=l I

interval, It follows that there exists c c {1,...,n} such that W" C I
c

If w c Ia and r' e Ib, then p < a < c < b i q by property 2,

q
definition 1.4. Therefore w" e u I..///

i=p

The following two propositions describe some useful properties
of adjacent n-tuples of intervals.

PROPOSITION 1.6: Assume J E I(<). Then there exist intervals K e A(<)

such that (K\J,J) is a decomposition of K. Moreover, under such

circumstances KJ c AM.

PROOF: K ={r e PI there exists r' e J with 7r < r'} is an example. /I 4;

POPOSITION 1.7: Assume (I1,.. .,I n ) 4 In(<)$ and p, q e {l,...,n}

q
with p < q. If I':= U Ii, then:i=p '""

A. (1 1 .SP-19 I', Iq+l n £ Im(<) where m : n + p - q.

B. (I ,...,I ) C I (') where r q - p + 1. a.p q r

0. .

Z-. *.2 9

• , ' " -. --- " ', ,.*" , "t" * '.;= ' '' ' "'.' ' - "." """ "" '2" 
,* -

• -- , - ., -,, " ""



7

An immediate consequence of proposition 1.7 is the fact that if

(IJ,K) is an adjacent triple (i.e. 3-tuple) of intervals, then (I,J),

(J,K), (IJ,K), and (I,JK) are all adjacent pairs of intervals.

DEFINITION 1.8: A partial order <1 on P is called an extension of <

if W' < W implies W' < w. If < is also a total order, then it is

called a linear extension of <.

PROPOSITION 1.9:

A. If I c I(<), and <I is the restriction of < to I, then

I n (< ) 1 In<) for each n.

B. If < is an extension of <, then In(Ca ) c I (C) for each n.

SECTION 2. Morse Decompositions

Let r be a Hausdorff topological space on which there is a flow.

We assume the reader is familiar with the ideas of invariant sets,

w-limit sets, w*-limit sets (a-limit sets), and attractor-repeller

pairs as defined in 1].

Let S be a compact invariant set in r. if s1 and S2 are compact

invariant subsets of S, then C(SIS 2 ;S):= (Y S I W (Y) c S1 and

M*(y) c SI is called the set of orbits connecting S to S in S. We
2 2 1

usually write C(S,S) when the set S is clear from context.
1S2

If A c S is an attractor, then we denote its complementary
...... ..... .

repeller by A. If (A,A*) is an attractor-repeller pair in S, then

S decomposes (see (1)) into the union, A u C(A,A*) u A* S. This

decomposition is generalized (in 1 and definition 2.1 below) via

the Norse decompositions of S.
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Assume < is a partial order on a finite set P.

DEFINITION 2.1: A (<-ordered) Morse decomposition of S is a collec-

tion M = {M(w)) P of mutually disjoint compact invariant subsets of

S such that if y e S\ u M(W), then there exist w' < w with
Wep

y C(M(7'),M(W)).

Assume M {M(<)1 P is a <-ordered Morse decomposition of S.

For notational convience we set C(W',i) = C(M(T'),M(TY)). The follow-

ing proposition is an immediate consequence of definition 2.1.

PROPOSITION 2.2: If <i is a partial order on P, then M is also a

<,-ordered Morse decomposition of S if and only if C(' ,7r) I * implies
71' < I for each w' t w in P.

The partial order < on P induces an obvious partial order on M.

This partial order on M is also denoted by < and is called an admis-

sible ordering of M (relative to S).

NOTE: A Morse decomposition of an invariant set may have many admis-

sible orderings. Furthermore, a collection M = {M(7)1 P may be a

Morse decomposition of more than one invariant set, and under such

circumstances the collection of admissible orderings of M relative to

one invariant set may differ from the collection of admissible order-

ings of M relative to another. It is easy to construct examples

illustrating these ideas.

• ..,.=-..:. , ,_..---, ,~~~~.......-..."", '.. •..'"..-......... ......-. ".--':
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Tistisc Teevent in the dfiniTons c that olo;owr, beon
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ordering of M relative to S by

PROPOSITION 2.3: Every admissible ordering of M4 is an extension of

the flow-ordering of N.

PROOF: Suppose w' <F w. Then there exists a sequence:

W,2W01 'V n = w, such that C(wj.,ri 9W 4 for each j =1,... ,n.

Bly proposition 2.2, n? <i for each j 1,... ,n; therefore

w'<i, and the result follows.//

Now, for each I e 1(c define

14() (U (W) U U u Wrl'ni)). ,-

%~ .
%e 1% l~I*
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We call M(I) a Morse set (in S) of the admissible ordering < of M.

The collection of Morse sets of the admissible ordering <,

{M(I) I I E I(<)) is denoted by MS(<).

NOTE: I(<) depends only on the partial order < on P. However, the

sets M(I) and the collection MS(<) depend not only on the admissible

ordering < of M but also on the invariant set S.

Propositions 1.9 and 2.3 imply MS(<) c MS(<r); i.e., the collec-

tion of Morse sets of the flow-ordering of M contains the Morse sets

associated to the other admissible orderings of M. Therefore we

call MS(< F) the Morse sets (in S) of M, and we denote this collectionF

by MS(M).

To simplify notation we set C(I',I) C(M(I'),M(I)) for I' and

I in I(M).

Clearly the Morse sets are invariant sets; if I is an attracting

interval (i.e., I e A(<)), then M(I) has another important property:

PROPOSITION 2.4: If I E A(<), then M(I) is an attractor in S.

PROOF: By induction on the order of the Morse decomposition M. If

M is a one set Morse decomposition, then the result obviously holds.

Assume the result is true for Morse decompositions of order n- 1,

and let M have order n. Assume I is in A(M) and 0 is a minimal ele-

ment of I. We claim that M(O) is an attractor in S. Let U be a r.'

compactS-neighborhood of M(6) disjoint from U M(O. If
7T4EP\O

V-
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N(I) =C U N(J). If 8E thnW\cC( NP ); hrfr
k W\k' 1hn c NI\( k-i hrfr

8E N(Pk9 However, N(Pkl N(J) u E and W n E =4;thus 8 E N(J).

It follows that W c C ku N(J) =N(I) and the proof of the claim is corn-

plete.

We now show that M4(I) is the maximal invariant set in

ci (N(I)\N(4))). (MCI),MCI*)) is an attractor-repeller pair in S. We

claim that M(I*) n ci (N(I)\N(4)) ) To see this, note thatx

cl (NI)\N(4)) c cl (N(J)\NC4))) u Ck Proposition 3.3 implies that

(N 1 ,N(J),N(4))) is an index triple for the attractor-repeller pair

(M(J),M(J*)). Therefore M(J*) c mnt (N \N(J)), implying thatXl1

M(J*) n N(J) =4.Since M(I*) c M(J*), it then follows that

M(I*) n ci (N(J)\NC4)) ) C c Vk, 1(*) c M(H), and V n M(
X k k) kk (k)

together imply that 1(1*) nl Ck ) Thus, 1(1*) n ci (N(J)\N(4))) u C =)kX k

completing the proof of the claim. Now, 14(1*) n ci (N(I)\N(4)) )x

M(I) c mnt ci (N(I)\NC4))), and ci (N(I)\N(4))) is contained in the isolat-xx Xx

ing neighborhood ci (N \N )of S; therefore lemma 3.2 implies that M(I)
x 1o

is the maximal invariant set in ci (N(I)\N(4))).x

N(4)) is positively invariant relative to N(I) because N(4)) is

positively invariant relative to N and N(O)) c N(I) c N

Now suppose that y c N(I) and y-R N(I). We show that there

exists t > 0 such that y.LO,t] cN(I) and yt E N(4)). If y E N(J),

then yR N(J), and therefore there exists t > 0 such that

y-[0,t] c N(J) c 14(I) and y~t c N(4)). If y N 1(J), then y E Ck* Let U

t =maxfsl y.[0,s] c C 1.Then y.[0,t ]C C ,and since C is positive-
1k 1 k k

ly invariant relative to clX(N \N(Pk~) and (N41'14 Pk-l) is an index

X 1 k-1
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if Il 12e A(k) then it easily follows that N(Il) u N(12

=N(I U I ), and with the aid of property 3 one can reasily see that
1 2

14( 1) n 14(12) N(11 I 1 2). Thus, we n-led to show that if I eA(< k)

then (N(I),N( )) is an index pair for MMI. Note that N(fl) No.

Assume I e A(<k). if Wr j I, then I e A(<k t and by induction

it follows that (N(I),N(o)) is an index pair for M(I). Now assume

Wr e I. Set J =I\lrk I* S\I, and J* S\J. J eA(<k) By in-

duction it follows that (N(J),N( )) is an index pair for M(J). Set

(iU Ii C P k\J) and E u C.. By definition, N(P ) E Eu N(J).

One can easily verify that E n M(I) =*

To show that (N(I),N(M) is an index pair for M(I) we first show

that M(I) C mnt X(N(I)\I4(f)). Clearly MCI) n N( ) *;so it is enough

to show that M(I) c intXN(I). Assume Y e MCI). Note that

M(I) c S c int N C cl (N N( ))U mnt N(P We consider 2 cases:
XlI X l\ k-I) X Pk-J7

yeitX(k-i ) adyc clX(N \N( Pk-)). In the former case, since

M(I) n E =*and intxN(Pk i) c E u int N(J), it follows that *-

y e int N(J) int N(I). Now consider the latter case, y 4Ex(N N(P ).

Since y e M(I), it follows that y c B C is a cl (N \N(P )-

k* k X I k-i

neighborhood of Bk; therefore there is an X-neighborhood W of y such

that W n cl (N \N(P ))C C .Since y c int N1 and y j E, we mayX 1 k-i k*

further assume that W c N Iand W n E *.We claim that W c N(I).

Given the claim, it then follows that y c mnt N(I) and the proof that

M(I) c mt (N(I)\N(0)) is complete. To prove the claim note that

............................
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k-i
N(P k- 1 )  N0 u (u Ci). Induction and proposition 3.3 imply

i-1

that (N IN(Pk.I),NO) is an index triple for the attractor-repeller

pair (M(P ),M(P-*l)). Therefore cl (N \N(Pk)) is an isolating
k-l k-1 X 1 Pk-i

neighborhood for M(P*_). It is easy to see that M(w ) is an attractor
k- 1 k

in M(P*_). M(Lk) is an attractor in S, and M(lrk) n ( = *. It

follows that Bk: B(M(k),clX(NI\N(PkI))) and B(M(Lk),N) are disjoint

compact sets.

If i < k and W irk' then M(wk) c M(Li). Since *

clX(NI\N(Pk_I) ) c N, it follows that Bk c B(M(Li),N). By induction

C n B(M(Li),N) = f; therefore B and C. are disjoint compact sets.

It is easy to see that Bk and M(Hk) are disjoint compact sets.

Let Vk be a r-neighborhood of Bk disjoint from B(M(Lk),N),14( H),

and each C. for which i < k and i t k" By lemma 3.7 there exists a

compact neighborhood Ck of Bk in cX (N\M(Pk_)) such that C c Vk and

Ck is positively invariant relative to clx(N\N(Pkl)).

We claim that the collection Ck = 'Cii=l,...,k satisfies pro-

perties 1-4. Properties 2 and 3 follow easily by induction and the

construction of C . To see that C is an isolating neighborhood of
k*C

M(Wk ) note that M( H) contains the repeller complementary to M(ffk ) in

M(P _) , and Ck n M(Hk ) *. Since M(wk) c intC and Ck is contained
k-k Xkk

in the isolating neighborhood clx(NI\N(PkI)) of M(P*_), lemma 3.2

then implies that Ck is an isolating neighborhood of M(rk). It remains

to show .that N is an index filtration for the admissible ordering
k

<of k.

% %
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We claim that C satisfies properties 1-4. Property 3 follows

trivially. Property 2 follows because C1  V and V1 n B(N(L 1,N)=.

To see that C is an isolating neighborhood of M(wI) note that M(H1 1
111

is the repeller complementary to M(wI ) in S and C1 n MH .

Furthermore M(wl) c intxC1 and C1 is contained in the isolating neigh-

borhood N of S; therefore lemma 3.2 implies C1 is an isolating neighbor-

hood of M(w1) Finally, to verify property 4 we prove that (C1 u No,N 0 )

is an index pair for M(wI ) M(WI) c S and (NI,NO) is an index pair ;
1

for S; therefore M(w 1) n No - *. Since M(wl) c intXC1, it then follows
that N( I ) c int 1  u N1N M() C 1((r U NO)\NO) c CI, and

X4w i 1  0 0)N 1) c 1 0(0

C1 is an isolating neighborhood of M1(w). Therefore M(w ) is the

maximal invariant set clx((C 1 u No)\No). No is positively invariant

relative to C U No because N0 is positively invariant relative to N1 0 1

and No c C u No c Nl. Last, suppose Y C u N and y*R : C u No

If t:= max{s y[O,sJ c C1), -then the positive invariance of C1 relative

to N implies that t = max{s I Y.[0,sJ c N). N clx(NI\No) and(N1 ,NO )

is an index pair, therefore yet e NO. Thus, y.[O,t] c C1 u No and

y.t 6 No . It follows that (C1 u N0,N0 ) is an index pair for M(w,),

and N = {C u N,N 0) is an index filtration for the admissible order-
1 1 0 i

Ing <I of Ml. The case k = 1 is complete.

Now assume the result is true for k - 1, and let

Ck-1 {Cii 1 ,... , be a collection satisfying properties 1-4. We

construct Ck, set Ck = C U {Ck}, and prove the collection Ck satisfies

properties 1-4.

,.I
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k-i
of theorem 3.8 has the property that (Ck, n n ( u C.)) is an index

k-i
pair for M( ). Thus, to the "complex" u C. we "glue" a set C

that is an isolating neighborhood of M(Wk), and this gluing is done

k-i
so that Ck attaches to u C. in an exit set for C C is constructed

i=l 1 k' k

so that if i < k and 7. k then C n C = * (i.e., property 3 in
4i k

theorem 3.8 is satisfied). This insures that property 2 in definition

3.4 is satisfied by the index filtration constructed from the sets.

Furthermore, Ck is constructed so that (by satisfying property 2 in
kI

theorem 3.8) a set C mwith k < m and Trk 4 Wm can be added satisfying

SC m = (i.e., so that property 3 in theorem 3.8 can be satisfied

at the mth stage of construction).

PROOF OF THEOREM 3.8: By induction on k.

Assume k = 1. We construct CI. M(I) and M(L) are disjoint

attractors in S. Therefore B(M(Ir ),N) and B(M(L ),N) are disjoint

compact sets. It is easy to verify B(M(r ),N) and M(HI) are disjoint.

Let V1 be a r-neighbonhood of B(M(nI),N) disjoint from B(M(L),N) and

M(H). By lemma 3.7, there exists a compact N-neighborhood C1 of

B(M(7Ir),N) such that Ci c VI and CI is positively invariant relative

to N. SetC ={C1.

I-...

K"

. . . -.. .. . . • , .. .. . . .. - -: . . --.. .. .- -.-.. ... ". ... . . . .' -".-.* '..'.'. . .- - -" "'' "-.-..



19

For each k define k { er P wrk w " ) and Hk - C, P Ir 4 rk)

Note that c A(<), and M(Lk) is the maximal attractor in AF(<) dis-

joint from M(k ). Similarly, M(H k) is the maximal repeller in S con-

tained in MS(<) and disjoint from M(w k).

Assume (NIN O) is an index pair for S, and set N = clx(NI\ NO).

We are now ready to prove the existence of an index filtration

for the admissible ordering < of M.

THEOREM 3.8: For each k = 1, ...,n, there exists a collection

Ck = {Ci l..., of compact subsets of N such that for each

i, j (1l,...,k} the following hold:

1) C is an isolating neighborhood of M(wi),

2) C n B(M(Li),N) = f,

3) If i and i are noncomparable, then Ci n C =

4) If N(I):= u (N U C t hen the collection

N := N(I) I I e A(<k)1 is an index filtration for the admissible

ordering <k of Mk k

NOTE 1: The case k n in theorem 3.8 establishes the existence of

an index filtration for the admissible ordering < of M.

NOTE 2: Theorem 3.8 is proved by induction on k. We build up the

collections C by adding sets; i.e., C is formed from C byk k k-1

adding a set Ck. One can verify that the Ck constructed in the proof

.'r..

%"e%

--%" , %
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DEFINITION 3.6: If A is an attractor in an isolated invariant set,

and N is an isolating neighborhood of the invariant set, then we set

B(AN) a {y E N y-IR c N and w*(y) c A).

B(A,N) is the set of orbits in N that flow to the attractor A

in backward time. In [ 2] it is proved that if A and N are as in

definition 3.6, then B(A,N) is compact.

The following lema provides an important step in the proof of

the existence of index filtrations.

LEMMA 3.7: Assume A and N are as in definition 3.6. If V is a r- !

neighborhood of B(A,N), then there is a compact N-neighborhood Z of

B(A,N) such that Z c V and Z is positively invariant relative to N.

NOTE 1: Lemma 3.7 is due to Conley-Zehnder [2 J. However, there is

a mistake in the proof of this result in [2 ). Salamon presents a

correct proof in 9].

NOTE 2: With A, N, Z as in lemma 3.7, the facts that A c int N and

A c int NZ imply that A c int x Z.

Now, order the elements of P : rir 2 , W3' " so that

Vj < Wk implies that j < k. Note that the total order induced on P

is a linear extension of <. Set Pk = {Wl""'Wk} and P* = P\P
k kk k*

Let <k be the restriction of < to Pk" M(P k ) is an isolated invariant

set, and Mk: {M(wi) I i s , ...,k} is a <k-ordered Morse decomposi-

tion of M(P )
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B. If (IiJ) is a decomposition of an attracting interval Kl e A(<)

for i = 1, 2, then N(K1)\N(1) = N(K2 )\N( 2 ).

PROOF:

A. Property 2 of definition 3.4 implies N( ) c N(I) c N(K); property

1 of definition 3.4 implies that (N(I),N(#)) and (N(K),N(#)) are

index pairs for M(I) and M(K), respectively. By corollary 2.7,

(K(I),M(J)) is an attractor-repeller pair in M(K). Therefore pro-

position 3.3 implies that (N(K),N(I)) is an index pair for M(J).

B. Let K:= K1 n 1, I:= I1 n 12 I, K e A(<), and (I,J) is a

decomposition of K. It is enough to show that N(K)\N(I) = N(K )\N(I

Note that K= K U I and K n I, = I; therefore, by property 2,

definition 3.4, N(KI) = N(K) u N(II) and N(K) n N(I I ) = N(I). These

equalities imply N(Ki)\N(Ii) = N(K)\N(Il) = N(K)N(I).///

Now if M(J) e NS(<), then propositions 1.6 and 3.5.A imply that

in N there exists an index pair (N(K),N(I)) for M(J). If (N(K1 ),N(I))

and (N(K2),N(I2)) are two such index pairs, then, as usual, there is

a flow-defined homotopy equivalence between the index spaces ,

1(K1 1)/N(I1) and N(K2 )IN(I2 )" However, as a result of proposition 3.5.B

it follows that these index spaces are homomorphic by a homeomorphism

induced by the identity map on N( K2)\N(I2) = N(Kl)\N(I 1 ). The importance

of this fact is brought out in section 4.

The remainder of this section is devoted to the proof of the exist- -

ence of index filtrations.

J...

%°%.*,
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Each Morse set in MS{M) is the intersection of an attractor

and a repeller in S. Attractors and repellers in S are isolated

invariant sets, and intersections of isolated invariant sets are

isolated invariant sets. Therefore each orse set in HS(M) is an

isolated invariant set.

We now extend the idea of an index triple for an attractor-

repeller pair to that of an index filtration for an admissible

ordering of a Morse decomposition.

DEFINITION 3.4: An index filtration for the admissible ordering <

of M is a collection of compact sets N = {N(I)}IcA(<C) satisfying:

1) for each I c A(<), (N(I),N(*)) is an index pair for the attrac-

tor M(I) c AF(,

2) for each I1, 12 e A(<), N(I1 n 12) = N(I) n N(I 2 ) and

N(I1 u 12 ) = N(I ) U N(I 2).

Now assume N = (N(I) IcA(<) is an index filtration for the

admissible ordering < of H. Property 1 in definition 3.4 insures

that in N there is an index pair for each attractor M(I) e AF(<).

In proposition 3.5.A below we prove that in N there is an index

pair for each Morse set M(J) E MS(<) ,

PROPOSITION 3.5: Assume J e IM.

A. If (1,J) is a decomposition of an attracting interval K c AM,

then (N(K),N(I)) is an index pair for 1(J) e 1S(<).

4% 1%

%%* % % % % %

Xt
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PROOF: Assume y c and y*IO,t] c N. We show that y.[0,t] NV,

and therefore N is positively invariant relative to N2  If ~
1. 2, %'%

y'LO,t] n No * then since (N1 ,N 0 is an index pair, it follows

that YK[O,t] c N1  Suppose y*LO,t] n N ~ .Set
1* 0

t' mints > 0 y-s E N01 Since (N1,N) is an index pair,

y-[0,t'] c N1  (N2,N ) is an index pair, y-t' e No, and y.[t',t] cN;

therefore yiCt',t] c 0 c N1  Hence y-[0,t] c N.

If y EN 2 and y.R N N2, then since (N 2,No) is an index pair and

N0 c N1, there exists t > 0 such that Y*EO,t) c N2 and y-t e N.

We now show that AA c mnt X(N 2\1).We claim that A* n~ N

Then since A* c S c intX(N 2\N 0) it follows that A* c int X( 2 \N 1 To

prove the claim assume A* nN 1  andlety eA* n N ' -y-tc A* cN 2 9

and since N 1is positively invariant relative to N 2, it follows that

yre c N1. y*R c A* n N1I; therefore 03(y) c A* n N l'A* nN0=

therefore a3(y) n N0 * and it follows that (a(y) c cl (N \N ). But A0 ~X 1

is the maximal invariant set in clx(N1\N 0) and oj(y) n A *;contra-
diction. So A* n N 1 = *, and therefore A* c mt (N \N )1

Last, we show that A* is the maximal invariant set in cl X(N 2\N 1Q

A c int XNi1. therefore A nl cl X(N 2\Ni1) = f. Also, cl X(N 2\N 1) is a

compact set X-neighborhood of A* contained in the isolating neighbor-

hood cl X(N 2 \No0) of S. Thus, lemma 3.2 implies that A* is the maximal

invariant set in cl X(N 2 \N 1 ).///

Recall that P is an ordered set with partial order < and

N (M(70 is a <-ordered Morse decomposition of S.

X V '. V. %V
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X may not be equal to the Conley index of S relative to X'. From .

now on we assume that the local flow X is fixed, and we omit refer-

ences to X in the definitions that follow.

Assume (A,A*) is an attractor-repellerpair in S.

LEMMA 3.2: If N is an isolating neighborhood of S, and N' is a com-

pact X-neighborhood of A disjoint from A* and contained in N, then

N' is an isolating neighborhood of A.

NOTE: The roles of AA and A can be reversed in lemma 3.2, and there-
5

fore we have an analogous result for A*. Also notethat such sets

N' can always be found, and thus A and A* are isolated invariant sets.

PROOF: We need to show that A is the maximal invariant set in N'.

Let T denote the maximal invariant set in N'; then A c T c S. If

y C S\A, then w*(y) c A*; therefore since A* n N' = , it follows

that w*(y) n N' *. Thus y i T, and this implies that A = T.///

With the following proposition the idea of an index pair for S

is generalized to that of an index triple for (A,A*).
'4'

PROPOSITION 3.3: Assume NO c N1 c N2. If (NIN 0  is an index pair

for A, and (N2,N0) is an index pair for S, then (N2,N1 ) is an index

pair for A*.

NOTE: We call such a triple (N2 ,N1 ,N0 ) an index triple for the

attractor-repeller pair (A,A*) in S.

"-"
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DEFINITION 3.1: A compact pair (N1 ,N0 ) in X is called an (X-)index

pair for S if . 4.->-i

1) S C intx(Ni\No), and S is the maximal invariant set in

clx(Ni\No)$ -

2) N0 is positively invariant relative to NI,

3) y e N1 and y-R A N1 imply that there is a t > 0 such that

y.[O,t] c N1 and y-t e N

NOTE: Property 1 implies cl (NI\NO ) is an isolating X-neighborhood

of S. Properties 2 and 3 imply NO acts as an "exit set" for N1 ;

i.e., orbits leaving N1 do so throughN.

If (N 1,N 0)is an X-index pair for S, we call the pointed quotient

space N \N0 an (X-)index space for S.

In 1] Conley proves the existence of index pairs for isolated

invariant sets, and furthermore proves that if (N1,N0 ) and (N'1 ,Nv")

are X-index pairs for an isolated invariant set in X, then there is

a flow-defined homotopy equivalence between the index spaces N \No
and N' \N.

10.
Thus, associated to the isolated invariant set S there is a

homotopy type of apointed space h(S), and if (NI,N 0 ) is an X-index

pair for S, then the homotopy type of the pointed space N I/NO is

equal to h(S). h(S) is called the Conley index of S (relative to X).

NOTE: All of the index theory that we present here is defined

relative to the local flow; e.g., if S is an isolated invariant set

in the local flows X and X', then the Conley index of S relative to

% . . . .-. . . . . . . . C
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the Morse set M(J) is the I .cirsection of an attractor M(K) and a .

repeller M(I)*. Since attractors and repellers are compact invariant

sets, it follows that Morse sets are compact invariant sets. As a

consequence of this we can restrict Morse decompositions to Morse

sets, and we can coarsen Morse decompositions using Morse sets. More

specifically, we have the following proposition:

PROPOSITION 2.6: If I e I(<), then:

A. {M(7r) I E c I) is a < -ordered Morse decomposition of M(I), where

<I is the restriction of < to I.

B. {M(7r) i r E P\I) u {M(I)) is a Morse decomposition of S.

* As an easy consequence of proposition 2.6 we have

COROLLARY 2.7: If (I,J) E I2(<), then (M(I),M(J)) is an attractor-

repeller pair in M(IJ).

SECTION 3: Index Filtrations

We assume the reader is familiar wl.th the concepts of local

flows, isolated invariant sets, and isolating neighborhoods as defined

in E 1]. Let X c r be a locally compact metric local flow, and assume

S is an isolated compact invariant set in X.

Given Z c Y c r, we call Z positively invariant relative to Y

if y c Z and y.[O,t] c Y together imply that y.[O,t] c Z. By a

compact pair (NlN 0 ) we mean an ordered pair of compact spaces with

No N1

5V

%I

.:. N O  ':

............................... 444.. 44Ut44
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Y e U\M(8), then Wh(y) c u M(w); so w*(y) d U. It follows (see
ireP\e

1l)) that the maximal invariant set in U (i.e., M(8)) is an attrac-

tor in S. M(P\8) is the repeller complementary to M(e) in S. The

collection {M(7r) 7r E P\8} is a < -ordered Morse decomposition of

M(P\e), where <* is the restriction of < to P\O. I\8 is an attract-

ing interval in <*; therefore, by induction, M(I\e) is an attractor

in M(P\8). M(P\I) is the repeller complementary to M(I\O) in (P\O).

M(P\B) is a repeller in S, and M(P\I) is a repeller in M(P\6); there-

fore (see 1]) M(P\I) is a repeller in S. M(I) is the attractor

complementary to M(P\I) in S, and the result follows.///

By proposition 1.3 it follows that the collection of attractors

{M(I) II e A(<)) contains * and S and is closed under intersections
and unions. This collection is an example of an attractor filtration

in S, where

DEFINITION 2.5: An attractor filtration in S is a finite collection

A of attractors in S satisfying

1) 0, S e A,

2) if A,, A2  A, then A, u A2 , A, n A e A.
1 A2 , n 2

We set AF(<) = {M(I) I A(<)), and we call this collection

the attractor filtration (in S) of the admissible ordering < of M.

Proposition 1.6 states that if J E I(<), then there exist K,

I e A(<) such that (I,J) is a decomposition of K. This implies that

Iji
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pair, it follows that yot C N(P 1) . Ck E = * and N(J) U E = N(P )

itthtk-i' 1 k-i

" then imply that .t1  . N(J). Now, as above, there exists t > 0 such

that (y-tl)'O,t 2) c N(J) and (Y.t 1 ).t 2 e N(O). Set t = t 1 + t 2 . Then a_

y.[O,t] c Ck u N(J) = N(I) and yot e N().

Thus, (N(I),N(O)) is an index pair for M(I), and the proof of

theorem 3.8 is complete.///

SECTION 4: The Algebraic Index Theory

In this section we present a brief and informal introduction to

the algebraic index theory. A detailed treatment of this material can

be found in [4).

As is mentioned in section 3, if (NI,NO ) and (NI ,N' O) are index

pairs for S, then there exist flow-defined homotopy equivalences be-

tween the index spaces NI/N0 and N'/ N'0 . The details of the defini-

tion of the flow-defined homotopy equivalences can be found in [l, 6],

and therefore we do not pursue this matter here. However, we do point

out that if N \No = N'\N' , then the flow-defined homotopy equivalence
I 0

between N INo and NV N16 is the homeomorphism induced by the identityr.Pron N1\No N' 1\ N'O. Also, in (1, 6) it is proved that the collection, ,

I(S), consisting of the index spaces NI/N0 and the homotopy classes of

the flow-defined maps between these index spaces, is a connected

simple system in the category of pointed spaces and homotopy classes

of maps.

°I
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For the discussion that follows assume a coefficient ring R is

fixed. Given a topological-space Z, let C(Z) represent the singular

chains of Z with coefficients in R, and let H*(Z) represent the cor-

responding homology complex.

Define H(S), the homology index of S, to be equal to the homology

of the Conley index of S; i.e., H(S) = H(h(S)). Note that if N IN0

is in I(S), then via the connected simple system there is a natural

identification between H(S) and H*(NI/N).

Assume (N2 ,NO,NO ) is an index triple for an attractor-repeller

pair(A,A*) in S. There exist inclusion and projection maps on index

spaces:

N1/N N2/N 0 N2/N I

and induced chain maps:

C(N/N0) * C(N2/N) C(N/N) (4.1)
1 0 2 0 2 0

,.5.

NOTE: For triples of spaces A c B c C that are sufficiently "nice"

(this includes all index triples), associated to the sequence of chain

maps,

:', C(BIA) C(ClA) - C(ClB) .-

there is a functorial exact homology sequence:

. H (B/A) - H*(C/A) H*(C/B) - H (B/A) * ...

NO,, -

--. ". ..,;.. .... :.... ' ''......-. ..... "......l.nlh.nmnml. ln.'n...ln..-.nl-.muinmm n
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Now, passing to homology in (4.1) we obtain:

..H(NI/N 0  4. H*(N 2IN 0 * H*(N 2/N1 ) + H*(N INO ) ( ... (4.2)

This exact sequence is the homology version of Kurland's long coexact

sequence for an index triple. In ( 7 J Kurland proves the long coexact %

sequence for an index triple is functorial relative to I(A*), I(A), and

I(S). In our setting this implies (4.2) induces the following exact -

sequence:

i(AS) p(S,A*) (A*,A).. .H(A*) H(A) (4.3)

This exact sequence is called the homology index sequence of the attractor-

repeller pair (A,A*).

The map a(A*,A) in (4.3) provides information about the set of

orbits connecting A and A* in S; for example:

PROPOSITION 4.1: If 3(A*,A) # 0 then C(A,A*) # 0. .

PROOF: If C(A,A*) *, then the Conley index of S is the topological

sum of the Conley indices of A and A*; i.e., h(S) = h(A) v h(A*). It kov

follows that the sequence (4.3) splits and 3(A*,A) = 0.///

) }. °:.. 6

Recall P is an ordered set with partial order < and N :M( )...

is a <-ordered Morse decomposition of S. For each J c I(<) set H(J)

equal to the homology index of the Morse set M(J); i.e., H(J) = H(M(J)).

Let N = (N(I)) A< be an index filtration for the admissible ordering

< of M. If J e I(<), and(I1,J), (12,J) are decompositions of attracting

intervals K1, K2 e A(M), respectively, then in I(M(J)) there is a

.N,..N:

WC . .. s t

'Y I,!. 4 .-..-. , 1I,
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homeomorphism between the index spaces N(K )IN(I1 ) and N(K2)/N(I 2).

Therefore there is an isomorphism between the chain complexes

C(N(K,)/N(I )) and C(N(K2 )/N( 12)). It follows that for every J c I(<)

there is defined a chain complex C,(J) with homology equal to H(J).

It is not difficult to see that if (I,J) e I2(<) , there are chain

maps defined:

CN(I) 1(IIJ. CN(IJ) p(IJ.O CN(J) (4,4)

If we pass to homology in (4.4), we obtain the homology index sequence

of the attractor-repeller pair (M(I),M(J)) in M(IJ):

-I- H(I) i(I, IJ))H(IJ) P(lJ'J).H(J) 3(JI)OH(I) . r
If (I,J,K) e 13(<M, then (I,J), (J,K), (IJ,K), and (1,JK) are

all in I 2(<). The associated sequences of chain maps weave together

in the following commutative braid diagram:

fDS
CCN(I)

-p .

?, C N(JK)

CN (K)

p .

N J.
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Passing to homology we obtain:

" H(I) H(K)

H(IJ)

H(IJK) H(J)

pH(JK) (4.5)

HI)
a pH( in

HNil H (IJK)

Suumrizing, for the admissible ordering < of M there is a

collection consisting of homology indices H(I) for each I e 1(0),

and maps between homology indices i(I,IJ), p(IJ,J), and a(J,I) for

each (1,J) 12(). We call this collection the homology index braid :'-

of the admissible ordering of the Morse decomposltion (relative to S).

Since every admissible ordering of M is an extension of the

flow-ordering <F of M, it follows that the homology index braid of <

is a subcollection of the homology index braid of <," Therefore we

refer to the homology index braid of <F as the homology index braid of

the Morse decomposition (relative to S).

In 4] we condense the information contained in the homology ,

index braid of an admissible ordering of M to a collection of matrices

4 'A' 0

.. J., . , ., .> . .'. . . .. . , . .. .. . . ... . .; '. .. ."-,. ,. , . ,; ,, 'l ;,, ,- ,,_ -,_, . ., .=
. ", . ;,- ,,, ''.". -, ' ': '.:..I . . '- ' , .t .Z . . .: " ". " " " ' _ ' ' 'i ' . ' ' .' ' ' .' . '. ' '2 . / ',? ': - '2 . , . .Z , '5 ,'.', _ .' . '.,. .,,L,,d,,
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of maps between the homology indices of the invariant sets (W) e M.

These matrices are called the connection matrices of the admissible

ordering. Generalizing the manner in which a(A*,A) contains informa-

tion about C(AA*), the connection matrices contain information about

the structure of the sets of connecting orbits C(W',T) for w', w e P.

Summarizing further, given N, an attractor filtration for the

admissible ordering <, there is a collection consisting of chain com-

plexes, C (I) for each I e I(<), and chain maps, i(I,IJ) and p(IJ,J)

for each (I,J) I2 (). We call this collection the chain complex2
braid of the index filtration. The chain complex braid of an index

filtration for an admissible ordering of a Morse decomposition has

the important property that upon passing to homology the chain complex

braid induces the homology index braid of the admissible ordering of

the Morse decomposition.

SECTION 5: An Example

Consider the following family of ordinary differential equations

parameterized by the variable 0 > o:

x-y

y- y + x(x - )(l-x)
The complete set of bounded solutions, Se, for these equations .r.

is shown (along with some nearby orbits) for various values of e > 0

in figure 1. In all cases the set S8 is an isolated invariant set

and the.collection N8 = (Me( )) is a Morse decomposition of So.

' . , . .. '., ..,e ,...,N ... .,..N.
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admissible ordering of M for each 8 6 9*. For 8 > 8* this admissible

ordering is also the flow-ordering. The partial order 1 < 2 induces

an admissible ordering, which is the flow-ordering, of Me for e < e*.
This example serves to illustrate the fact (which is presented

formally in [5]) that Morse decompositions and admissible orderings

of Morse decompositions continue locally under perturbation. Further-

more, this example establishes that the flow-ordering of a Morse

decomposition (even though it does continue to an admissible ordering

of nearby Morse decompositions) does not necessarily continue to the

flow-ordering of nearby Morse decompositions.

To illustrate an example of an index filtration and a homology

index braid consider the case 8 8 above. Qualitatively this flow

can be depicted as in figure 2.

M(3)

M(2) Hit

Figure 2

, -
..

-xi' 1".1. ** .7NS VW . j...* - ~ k
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An index filtration for the flow-ordering of the Morse decomposi-

tion M (M(i)) is illustrated in Figure 3:

(3)

M(2) MO.)

N(f) N(l) N(12) N(123)

4'6

appropriate index pairs from the index filtration above. For each

Morse set the homology index is trivial in all dimensions except ' '

dimensions one and zero. The following table illustrates dimension

~.-

%~ % q
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one (top row) and dimension zero (bottom row) of the homology index

(with 2Z coefficients) of each Morse set:

MW1) M(2) M(3) M(12) M(13) M(123)

0 ZZ2 2Z 0 2Z 0 2Z 2Z
222 2 2

2Z 0 0 0 0 0

To examine the homology index braid of the Morse decomposition

we point out that there is only one adjacent triple of intervals,

(1,2,3), in the flow-ordering, and in the corresponding braid diagram

all of the non-trivial homology and homology maps appear in that part

of the braid diagram that we obtain by replacing I, J, and K in dia-

gram (4.5) with 1, 2, and 3, respectively, and by starting with dimen-

sion 2 of H(l) in the upper left and dimension 3 of H(3) in the

upper right. Thus with an appropriate choice of homology generators

we obtain:

°..•. *>. .5

0 '0
o0

000

" + 2 2...'

.,¢

,.. 2,Z,
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In [ 4 J we condense this information into the collection of

connection matrices of the Morse decomposition and indicate how the .

connection matrices reveal information about the structure of the

sets of orbits connecting the sets in the Morse decomposition.

It is instructive to compute the homology index braids for the *

cases 8 e 8* and observe the changes that occur under perturbation

from 8 = O,. This problem is discussed further in [ 5 ) where we

present the continuation theory for homology index braids and con-

nection matrices.

OP
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